Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

| Q Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ (b) $(-5)^{2}-4 \times-5$ oe e.g. $25+20$ 2 M1 for a correct substitution
 45 A1 | | | |$.$

2 (c)	$5 x-3=4(2 x+3)$ oe or $\frac{5 x}{4}-\frac{3}{4}=2 x+3$ oe		3	M1for correctly removing the denominator, condone missing brackets
	e.g. $5 x-8 x=12+3$ or $-3 x=12+3$ or $8 x-5 x=-12-3$ or $3 x=-12-3$ or $-\frac{3}{4}-3=2 x-\frac{5 x}{4}$ or $-\frac{15}{4}=\frac{3 x}{4}$		M1for a correct rearrangement with terms in x on one side and numbers on the other, allow correct rearrangement of their equation in the form $a x+b=c x+d$	
		-5		A1dep on at least M1 SCB2 for an answer of $x=-2$ coming from $5 x-3=8 x+3$ or $x=5$ coming from $5 x-3=2 x+12$
			Total 3 marks	

$\mathbf{3}$ (a)		0	1	B1 condone 150°	
	(b)		-2	1	B1condone 3^{-2}
					Total 2 marks

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working	Answer	Mark	Notes
4	$\left.\begin{array}{l} \text { e.g. } 35 x+10 y=27.5 \text { or } 21 x+6 y=16.5 \\ 6 x-10 y=34 \\ \hline 41 x=61.5 \end{array} \quad \begin{array}{rl} 21 x-35 y & =119 \\ 41 y & =-102.5 \end{array}\right] \begin{aligned} & \text { e.g. } 3 x-5\left(\frac{5.5-7 x}{2}\right)=17 \text { or } \\ & 7\left(\frac{17+5 y}{3}\right)+2 y=5.5 \text { oe } \end{aligned}$		4	M1 for a correct method to eliminate x or y : coefficients of x or y the same and correct operator to eliminate selected variable (condone any one arithmetic error in multiplication) or writing x or y in terms of the other variable and correctly substituting.
		$x=1.5$ or $y=-2.5$		A1 oe, dep on M1
				M1 (dep on $1^{\text {st }} \mathrm{M} 1$) for a correct method to find other variable by substitution of found variable into one equation or for repeating the above method to find the second variable.
		$x=1.5$ and $y=-2.5$		A1 oe, dep on M1
				Total 4 marks

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Q ${ }^{\text {a }}$ Working		Answer		Mark	Notes
5 (a)			2	M1	for $(x \pm 6)(x \pm 7)$
		$(x+6)(x-7)$		A1	for $(x+6)(x-7)$ or $(x-7)(x+6)$ isw roots given if candidate solves the quadratic $=0$
(b)	$3 x-8 x<3-15$ or $15-3<8 x-3 x$		3	M1	accept as equation or with the wrong inequality sign.
	$-5 x<-12$ or $12<5 x$				accept as equation or with the wrong inequality sign.
		$x>2.4$		A1	Accept $2.4<x$ or $x>\frac{12}{5}$ oe allow ($-\infty, 2.4$) award M1 M1 A0 for 2.4 with $=$ sign or no inequality or incorrect inequality sign.
					Total 5 marks

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working			Answer	Mark	Notes
7 (a)		9, 28, 45, 63, 76, 80	1	B1		
(b)			2	B2	for a correct cf graph with points at ends of intervals and joined with a curve or line segments If not B 2 then B 1 for 5 or 6 of their points (ft from a table with only one arithmetic error) at ends of intervals and joined with a curve or line segments OR for 5 or 6 points plotted correctly at ends of intervals not joined OR for 5 or 6 of their points from table plotted consistently within each interval (not at upper ends of intervals) at their correct heights and joined with a curve or line segments	
(c)	e.g. reading across from 40 and reading down		2	M1	ft reading from a cf graph provided method is shown	
		35-38		A1 ft from their cf graph		
						Total 5 marks

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

\mathbf{Q}	Working	Answer	Mark	Notes

$\mathbf{8}$	e.g. $\frac{15}{4}$		3	M1for $3 \frac{3}{4}$ expressed as an improper fraction
	e.g. $\frac{15^{5}}{4} \times \frac{7}{9^{3}}$ OR $\frac{105}{36}$ oe		M1correct cancelling or multiplication of numerators and denominators without cancellinge.g. $\frac{15^{5}}{4} \times \frac{7}{9^{3}}=\frac{35}{12}=2 \frac{11}{12}$ or $\frac{15}{4} \times \frac{7}{9}=\frac{105}{36}=\frac{35}{12}=2 \frac{11}{12}$ or $\frac{15}{4} \times \frac{7}{9}=\frac{105}{36}=2 \frac{33}{36}=2 \frac{11}{12}$ shown A1dep on M2, for conclusion to $2 \frac{11}{12}$ from correct working - either sight of the result of the multiplication e.g. $\frac{105}{36}$ oe must be seen or correct cancelling prior to the multiplication to $\frac{35}{12}$ NB: use of decimals scores no marks	

9 (a)		33.75	1	B1oe eg 33.750
(b)		33.85	1	B1allow 33.849 or 33.849r or "33.8499.." do NOT allow 33.879 without indication of recurring "9"
			Total 2 marks	

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working	Answer		Mark	Notes
10 (a) (i)		40	2	B1	cao (may be written on the diagram)
(ii)		Angles in same segment (are equal)		$\overline{\mathrm{B} 1}$	or angles at the circumference from the same arc of the circle or angles on the same arc of the circle Alternatively: (two applications of) Opposite angles of a cyclic quadrilateral sum to 180°
(b)		140	1	B1	cao (may be written on the diagram)
					Total 3 marks

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working	Answer	Mark	Notes
12	$y n^{2}=n^{2}+d \text { or } y=1+\frac{d}{n^{2}}$		4	M1
	$y n^{2}-n^{2}=d \text { or }-d=n^{2}-y n^{2} \text { or } y-1=\frac{d}{n^{2}}$			M1
	$n^{2}(y-1)=d$ or $-d=(1-y) n^{2}$			M1 for factorising n^{2} from a suitable expression. or $n^{2}=\frac{d}{y-1}$
		$n=\sqrt{\frac{d}{y-1}}$		$\begin{array}{ll} \hline \text { A1 } & \text { Accept } n=\sqrt{\frac{-d}{1-y}} \\ & \text { Penalise } \pm \sqrt{ } \end{array}$
				Total 4 marks

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working	Answer	Mark	Notes		
13 (a)	$T=\frac{k}{m^{2}}$ or $T m^{2}=k$		3	M1 for a correct equation with a constant Do not allow constant $=1$		
	$30 \times 0.5^{2}=k$ or $30=\frac{k}{0.5^{2}}$ or $k=7.5$ or $k=\frac{15}{2}$			M	dep on M1 for correct substitution in a correct equation	M2 for $k=7.5$ or $k=\frac{15}{2}$
		$T=\frac{7.5}{m^{2}}$		A1 for $T=\frac{7.5}{m^{2}}$ or $T=\frac{15}{2 m^{2}}$ SCB2 for $T m^{2}=7.5$ or $T m^{2}=\frac{15}{2}$ or $m^{2}=\frac{7.5}{T}$ or $m^{2}=\frac{15}{2 T}$		
(b)		750	1	B1	cao	
				Total 4 marks		

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working	Answer	Mark	Notes
14			2	M1 Arcs on $B C, A B$ and arcs from these points meeting or for bisector without arcs
		Correct bisector		A1 must see correct arcs
				Total 2 marks
15	$-3\left(x^{2}-4 x\right)+7$ or $-3\left(x^{2}-4 x-\frac{7}{3}\right)$		4	M1 for factorising the expression to find b or $b=-3$ stated or shown clearly in answer.
	$\begin{aligned} & -3\left[(x-2)^{2} \ldots . .\right] \text { or } \mathrm{c}=-2 \\ & -3\left[(x-2)^{2}-4\right]+7 \text { or }-3\left[(x-2)^{2}-4-\frac{7}{3}\right] \end{aligned}$			M1 or for c shown clearly in answer.
	$-3(x-2)^{2}+12+7 \text { or }-3\left[(x-2)^{2}-\frac{19}{3}\right]$			M1 fully correct method.
		$19-3(x-2)^{2}$		A1 for $19-3(x-2)^{2}$ oe
				Total 4 marks

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working	Answer	Mark	Notes
16 (a)	$(\mathrm{f}(2.6)=) 5 \times 2.6-7(=6) \text { or } \operatorname{gf}(x)=\frac{5(5 x-7)}{5 x-7+4} \text { oe }$		2	M1 for finding $\mathrm{f}(2.6)$ or $\operatorname{gf}(x)$
		3		A1
(b)	$5\left(\frac{5 x}{x+4}\right)-7=2$ or $\frac{5 x}{x+4}=\frac{2+7}{5}$ oe		3	M1
	$25 x=9(x+4)$ oe			M1 for removing the denominator $(x+4)$ in a correct equation
		2.25		A1 oe
ALT (b)	$\mathrm{fg}(x)=2 \Rightarrow \mathrm{~g}(x)=\mathrm{f}^{-1}(2)(=9 / 5)$ and attempt at f^{-1} or $\mathrm{f}^{-1}(2)$			M1
	$x=\mathrm{g}^{-1}(\times 9 / 5$ ")			M1
		2.25		A1 oe
(c)	$\begin{array}{lll} y=\frac{5 x}{x+4} & \text { or } & x=\frac{5 y}{y+4} \\ y(x+4)=5 x & & x(y+4)=5 y \end{array}$		3	M1
	e.g. $4 y=x(5-y)$ or e.g. $4 x=y(5-x)$			M1 for a correct rearrangement and factorising
		$\frac{4 x}{5-x}$		$\text { A1 oe e.g. } \frac{-4 x}{x-5}$
				Total 8 marks

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Q ${ }^{\text {a }}$ Working		Answer		Mark Notes		
17	$\begin{aligned} & (y-4)^{2}-(y-4)+y^{2}=10 \text { or } \\ & x^{2}-x+(x+4)^{2}=10 \end{aligned}$		6		for substituting linear equation into the quadratic equation	
	$\begin{aligned} & 2 y^{2}-9 y+10=0 \text { or } \\ & 2 x^{2}+7 x+6=0 \end{aligned}$				for a correct equation in the form $a x^{2}+b x+c=0$ or $a x^{2}+b x=-c$ or equations of the same form but in y	
	$\begin{aligned} & (2 y-5)(y-2)=0 \text { or } \\ & \frac{--9 \pm \sqrt{(-9)^{2}-(4 \times 2 \times 10)}}{2 \times 2} \text { or } \\ & \frac{(2 x+3)(x+2)=0 \text { or }}{\frac{-7 \pm \sqrt{7^{2}-(4 \times 2 \times 6)}}{2 \times 2}} \end{aligned}$				For solving their 3 term quadratic equation using any correct method. If factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification - allow as far as eg $\begin{aligned} & \frac{-7 \pm \sqrt{49-48}}{4} \text { or eg }\left(x+\frac{7}{4}\right)^{2}-\frac{1}{16}=0 \text { oe } \\ & \frac{9 \pm \sqrt{81-80}}{4} \text { or eg }\left(y-\frac{9}{4}\right)^{2}-\frac{1}{16}=0 \text { oe } \end{aligned}$	
	(-1.5, 2.5) and (-2,2)			A1 for both pairs of coordinates oe eg $\left(\frac{-3}{2}, \frac{5}{2}\right)$ accept coordinates listed as pairs, ie $x_{1}, y_{1}, x_{2}, y_{2}$		
	$\sqrt{\left('-1.5{ }^{\prime}-{ }^{\prime}-22^{\prime}\right)^{2}+\left(2.5{ }^{\prime}-2^{\prime}\right)^{2}}$			M1 dep on M1 for finding length of $A B$		
		$\frac{\sqrt{2}}{2}$		A1 dep M3		
				Total 6 marks		

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working An	Answer	Mark	Notes
18	$B D F=70^{\circ}$	4	B1 may	
	Alternate segment theorem		B1 reas is e segi	a tangent and a chord ended in the alternate
	$E F B=180-(70+40)=70$ opposite angles in a cyclic quadrilateral		B1 An cyc	opposite angles in a to 180°
	$C B F=E F B$ alternate angles therefore $E F$ is parallel to $A B C$		B1 con	les are equal
				Total 4 mark

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working An	Answer	Mark		Notes
19	$\begin{aligned} & A B=2 \mathbf{b}-2 \mathbf{a} \text { or } B A=2 \mathbf{a}-2 \mathbf{b} \\ & \text { unuu } \\ & M N=10 \mathbf{a}-\mathbf{b} \text { or } N M=-10 \mathbf{a}+\mathbf{b} \end{aligned}$		5		for finding $A B$ or ${ }^{\text {unu }}{ }^{\text {unum }}$ or $M N$ or $N M$
					for writing eg $M P$ or $P N$ or $A P$ or $A M$ in two different ways in terms of a and \mathbf{b} $A M$ in one way) These may be written as eg $P M$ in place of $M P$
					dep M3 for writing a pair of equations using their variables. $M P(1 \mathrm{st})$ leads to $\lambda=\frac{1}{9}, k=\frac{4}{9}$ $M P(2 n d)$ leads to $\lambda=\frac{1}{9}, k=\frac{5}{9}$ ииш $P N$ leads to $\lambda=\frac{8}{9}, k=\frac{4}{9}$ ${ }^{\text {unu }}$ (1st) leads to $\lambda=\frac{4}{9}, k=\frac{8}{9}$ $A P$ (2nd) leads to $\lambda=\frac{4}{9}, k=\frac{1}{9}$ иии AM leads to $\lambda=\frac{1}{9}, k=\frac{4}{9}$
		4:5		A1	cao

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

Practice Tests Set 15 - Paper 1H mark scheme, performance data and suggested grade boundaries

| Q Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |

					Edexcel averages: scores of candidates who achieved grade:							
Qn	Skill tested	Mean score	Max score	$\begin{aligned} & \text { Mean } \\ & \% \end{aligned}$	ALL	9	8	7	6	5	4	3
1	Expressions and formulae	1.69	2	85	1.69	1.99	1.94	1.80	1.64	1.27	0.57	0.00
2	Linear equations	2.70	3	90	2.70	2.98	2.88	2.75	2.74	2.35	2.11	0.33
3	Powers and roots	1.67	2	84	1.67	1.96	1.79	1.73	1.49	1.38	1.03	0.33
4	Simultaneous linear equations	3.31	4	83	3.31	3.95	3.85	3.42	2.89	2.38	1.39	0.67
5	Inequalities	4.04	5	81	4.04	4.89	4.59	4.07	3.77	2.61	1.96	1.11
6	Algebraic manipulation	2.35	3	78	2.35	2.96	2.68	2.38	2.04	1.69	0.64	0.11
7	Statistical measures	3.89	5	78	3.89	4.75	4.43	3.95	3.68	2.68	1.53	0.22
8	Fractions	2.21	3	74	2.21	2.64	2.30	2.36	2.17	1.62	1.11	0.33
9	Degree of accuracy	1.31	2	66	1.31	1.89	1.55	1.32	0.79	0.58	0.18	0.00
10	Angles, lines and triangles	1.93	3	64	1.93	2.46	2.21	1.98	1.45	1.16	0.93	0.11
11	Graphs	3.78	6	63	3.78	4.78	3.87	3.57	3.17	2.95	2.25	1.11
12	Algebraic manipulation	2.47	4	62	2.47	3.78	3.17	2.15	1.40	0.55	0.25	0.11
13	Proportion	2.22	4	56	2.22	3.49	2.60	1.79	1.24	0.83	0.36	0.00
14	Construction	1.09	2	55	1.09	1.68	1.33	0.89	0.55	0.50	0.11	0.00
15	Quadratic equations	1.95	4	49	1.95	3.51	2.15	1.50	0.64	0.18	0.18	0.00
16	Function notation	4.31	8	54	4.31	7.42	5.18	1.40	1.17	0.32	0.44	0.00
17	Quadratic equations	2.49	6	42	2.49	5.11	2.61	1.08	0.53	0.14	0.11	0.00
18	Geometrical reasoning	0.97	4	24	0.97	1.97	1.02	0.48	0.09	0.13	0.07	0.00
19	Vectors	0.67	5	13	0.67	1.37	0.74	0.35	0.04	0.04	0.00	0.00
20	Powers and roots	1.37	5	27	1.37	3.28	1.02	0.31	0.06	0.06	0.00	0.00
	TOTAL	46.42	80	58	46.42	66.86	51.91	39.28	31.55	23.42	15.22	4.43

Suggested grade boundaries

Grade	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$
Mark	60	46	36	28	19	10	2

